HighFive 3.0.0
HighFive - Header-only C++ HDF5 interface
Loading...
Searching...
No Matches
eigen.hpp
Go to the documentation of this file.
1#pragma once
2
4#include "H5Exception.hpp"
5
6#include <Eigen/Core>
7#include <Eigen/Dense>
8
9namespace HighFive {
10namespace details {
11
12template <class EigenType>
13struct eigen_inspector {
14 using type = EigenType;
15 using value_type = typename EigenType::Scalar;
16 using base_type = typename inspector<value_type>::base_type;
17 using hdf5_type = base_type;
18
19
20 static_assert(int(EigenType::ColsAtCompileTime) == int(EigenType::MaxColsAtCompileTime),
21 "Padding isn't supported.");
22 static_assert(int(EigenType::RowsAtCompileTime) == int(EigenType::MaxRowsAtCompileTime),
23 "Padding isn't supported.");
24
25 static constexpr bool is_row_major() {
26 return EigenType::ColsAtCompileTime == 1 || EigenType::RowsAtCompileTime == 1 ||
27 EigenType::IsRowMajor;
28 }
29
30
31 static constexpr size_t ndim = 2;
32 static constexpr size_t min_ndim = ndim + inspector<value_type>::min_ndim;
33 static constexpr size_t max_ndim = ndim + inspector<value_type>::max_ndim;
34 static constexpr bool is_trivially_copyable = is_row_major() &&
35 std::is_trivially_copyable<value_type>::value &&
36 inspector<value_type>::is_trivially_nestable;
37 static constexpr bool is_trivially_nestable = false;
38
39 static size_t getRank(const type& val) {
40 return ndim + inspector<value_type>::getRank(val.data()[0]);
41 }
42
43 static std::vector<size_t> getDimensions(const type& val) {
44 std::vector<size_t> sizes{static_cast<size_t>(val.rows()), static_cast<size_t>(val.cols())};
45 auto s = inspector<value_type>::getDimensions(val.data()[0]);
46 sizes.insert(sizes.end(), s.begin(), s.end());
47 return sizes;
48 }
49
50 static void prepare(type& val, const std::vector<size_t>& dims) {
51 if (dims[0] != static_cast<size_t>(val.rows()) ||
52 dims[1] != static_cast<size_t>(val.cols())) {
53 val.resize(static_cast<typename type::Index>(dims[0]),
54 static_cast<typename type::Index>(dims[1]));
55 }
56 }
57
58 static hdf5_type* data(type& val) {
59 if (!is_trivially_copyable) {
60 throw DataSetException("Invalid used of `inspector<Eigen::Matrix<...>>::data`.");
61 }
62
63 return inspector<value_type>::data(*val.data());
64 }
65
66 static const hdf5_type* data(const type& val) {
67 if (!is_trivially_copyable) {
68 throw DataSetException("Invalid used of `inspector<Eigen::Matrix<...>>::data`.");
69 }
70
71 return inspector<value_type>::data(*val.data());
72 }
73
74 static void serialize(const type& val, const std::vector<size_t>& dims, hdf5_type* m) {
75 Eigen::Index n_rows = val.rows();
76 Eigen::Index n_cols = val.cols();
77
78 auto subdims = std::vector<size_t>(dims.begin() + ndim, dims.end());
79 auto subsize = compute_total_size(subdims);
80 for (Eigen::Index i = 0; i < n_rows; ++i) {
81 for (Eigen::Index j = 0; j < n_cols; ++j) {
82 inspector<value_type>::serialize(val(i, j), dims, m);
83 m += subsize;
84 }
85 }
86 }
87
88 static void unserialize(const hdf5_type* vec_align,
89 const std::vector<size_t>& dims,
90 type& val) {
91 if (dims.size() < 2) {
92 std::ostringstream os;
93 os << "Impossible to pair DataSet with " << dims.size()
94 << " dimensions into an eigen-matrix.";
95 throw DataSpaceException(os.str());
96 }
97
98 auto n_rows = static_cast<Eigen::Index>(dims[0]);
99 auto n_cols = static_cast<Eigen::Index>(dims[1]);
100
101 auto subdims = std::vector<size_t>(dims.begin() + ndim, dims.end());
102 auto subsize = compute_total_size(subdims);
103 for (Eigen::Index i = 0; i < n_rows; ++i) {
104 for (Eigen::Index j = 0; j < n_cols; ++j) {
105 inspector<value_type>::unserialize(vec_align, subdims, val(i, j));
106 vec_align += subsize;
107 }
108 }
109 }
110};
111
112template <typename T, int M, int N, int Options>
113struct inspector<Eigen::Matrix<T, M, N, Options>>
114 : public eigen_inspector<Eigen::Matrix<T, M, N, Options>> {
115 private:
116 using super = eigen_inspector<Eigen::Matrix<T, M, N, Options>>;
117
118 public:
119 using type = typename super::type;
120 using value_type = typename super::value_type;
121 using base_type = typename super::base_type;
122 using hdf5_type = typename super::hdf5_type;
123};
124
125template <typename T, int M, int N, int Options>
126struct inspector<Eigen::Array<T, M, N, Options>>
127 : public eigen_inspector<Eigen::Array<T, M, N, Options>> {
128 private:
129 using super = eigen_inspector<Eigen::Array<T, M, N, Options>>;
130
131 public:
132 using type = typename super::type;
133 using value_type = typename super::value_type;
134 using base_type = typename super::base_type;
135 using hdf5_type = typename super::hdf5_type;
136};
137
138
139template <typename PlainObjectType, int MapOptions>
140struct inspector<Eigen::Map<PlainObjectType, MapOptions>>
141 : public eigen_inspector<Eigen::Map<PlainObjectType, MapOptions>> {
142 private:
143 using super = eigen_inspector<Eigen::Map<PlainObjectType, MapOptions>>;
144
145 public:
146 using type = typename super::type;
147 using value_type = typename super::value_type;
148 using base_type = typename super::base_type;
149 using hdf5_type = typename super::hdf5_type;
150
151 static void prepare(type& val, const std::vector<size_t>& dims) {
152 if (dims[0] != static_cast<size_t>(val.rows()) ||
153 dims[1] != static_cast<size_t>(val.cols())) {
154 throw DataSetException("Eigen::Map has invalid shape and can't be resized.");
155 }
156 }
157};
158
159
160} // namespace details
161} // namespace HighFive
Definition assert_compatible_spaces.hpp:15
size_t compute_total_size(const std::vector< size_t > &dims)
Definition compute_total_size.hpp:10